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The properties of solitary waves are investigated numerically using a series in sech2 +x 
to describe the wave profile. (It is shown that this expansion is complete in the L2 
sense.) Seventeen terms in the series are computed. For waves of amplitudes up to 
half the undisturbed fluid depth, the 17-term partial sum gives profiles and 
wave-parameter values with a t  least two-digit accuracy. For waves of larger 
amplitude, if Pad6 approximants are used to accelerate convergence, the computed 
values of the wave parameters are found to agree with the values obtained by 
Longuet-Higgins & Fenton (1974), but differ from those of Williams (1981), Witting 
(1981) and Hunter & Vanden-Broeck (1  983). Possible explanations of this discrepancy 
are discussed. 

1. Introduction 
The solitary wave has been the subject of a great deal of study since the report 

of its discovery by John Scott Russell (Russell 1838). Nevertheless, an exact 
description for a wave of arbitrary height has yet to be found, and the maximum 
possible height for a solitary wave in a channel of constant depth is still not known 
exactly. A list of several approximate values for the maximum amplitude is presented 
in table 1. All of these estimates (except Laitone's) rely on Stokes' criterion for the 
determination of the wave of maximum amplitude. Stokes (1880) conjectured that 
the highest-possible stationary wave would be characterized by sharp crests, the fluid 
velocity a t  the crests then necessarily vanishing (in the frame of reference in which 
the flow is steady). He went on to demonstrate that the crests would have to enclose 
an angle of 120". This conjecture has apparently been proved recently for the 
solitary wave (see the remark added to the paper of Amick & Toland 1981). 

Longuet-Higgins & Fenton (1974) computed the values of several parameters for 
solitary waves of all amplitudes (up to the maximum) by means of partial power series 
and Pad6 approximants. Byatt-Smith & Longuet-Higgins (1976) also computed 
parameter values for waves of almost all amplitudes using Byatt-Smith's (1970) 
integral-equation formulation. In addition, they were able to plot profiles for all waves 
except those of nearly maximum amplitude. Williams (1981) studied periodic waves 
of maximum height by explicitly including two terms designed to produce sharp crests 
of the proper form. He provides extensive tabulations of profiles and pressure, 
velocity and acceleration distributions. His large-wavelength data may be applied 
to solitarywaves. Witting's (1981) study ofsolitarywaveswasbasedonaFourier-series 
technique, with a singular term to give the sharp crest of the highest wave. More 
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maximum amplitude 
Author 

ho 
Russell (experimental, 1845) 1 
Boussinesq (see Keulegan & Patterson 1940) 0.73 
Rayleigh (1876) 
McCowan (1891) 
McCowan (1 894) 
Laitone (1960) 
Lenau (1966) 
Yamada, Limara BE Okabe (1968) 
Byatt-Smith (1970) 
Strelkoff (1970) 
Fenton (1972) 
Longuet-Higgins & Fenton (1974) 
Williams (1981) 
Witting (1981) 
Hunter & Vanden-Broeck (1983) 

TABLE 1 

1 
0.82 
0.78 

0.83 
0.8262 
0.83 
0.85 
0.85 
0.827 
0.833 197 
0.8332 
0.83322 

a 
11 

recently Hunter & Vander-Broeck (1983) have calculated the maximum wave to be 
0.83322, based on the earlier work of Lenau (1966). They have also recalculated the 
results of Yamada (1957) and Byatt-Smith & Longuet-Higgins (1976). 

In this paper we study the properties of solitary waves by means of a perturbation 
scheme. Our approach resembles that of Longuet-Higgins & Fenton, but we derive 
our series coefficients by a different method. Based on the results of earlier 
investigations, we assume that the fluid velocity on the channel bed can be expressed 
in a power series of hyperbolic secants, which enables us to formulate the problem 
as an infinite system of nonlinear algebraic equations. This derivation is given in $2, 
where we also discuss the partial numerical solution of these equations. This partial 
solution allows us to find the first 17 terms in a series expansion for the wave profile. 
The computational results are presented in $4. In  $ 5  we compare this method with 
other recent methods. 

2. Formulation of the problem 
We consider the two-dimensional irrotational flow of an inviscid fluid of uniform 

density in an open channel with a horizontal bottom. The z-axis is taken to lie along 
the channel bed and the y-axis is taken vertically upward. The shape of the free 
surface of the fluid is given by 

(2.1) 

where h, denotes the depth of the fluid in the undisturbed state. Since the flow is 
incompressible and irrotational there exists a harmonic velocity potential $ ( t ,  x, 9). 
Expanding q5 about y = 0 and using the facts that q5 is harmonic and that @/ay = 0 
on y = 0, we obtain 

y = w, 2) = h,[l +Y(t, 4 1 ,  

where @(t, 2) = $( t ,  x, 0). Since we are interested specifically in stationary-wave 
solutions, we assume that @(t,s) = @(g) and <(t ,x )  = [ ( E ) ,  with 5 = ( ~ / h , )  ( 2 - c t ) .  
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(I/. measures the non-dimensional width of the wave.) We also introduce the 
notation 

I n  this notation the kinematic free-surface boundary condition is 
a, 

K 5 =  x ( -  l ) n  (DZnw) [ K (  1 + 5)]"+' 
n = o  (2n+ l ) !  (2.7) 

and the dynamic free-surface condition is 

(2.8) 
c: - u s + ~ ( u : + v : ) + - ~ =  0,  
c2 

where c: = gh, and g is the acceleration due to gravity. 
Fenton (1972) noticed that, based on the solutions of Boussinesq, Laitone (1960) 

and Grimshaw (197 1 ), it  seemed reasonable to express 6 as a series in powers of sech2 it. 
He also noted that differentiating such a series an even number of times would yield 
a series of the same form. This suggests the possibility of expanding the velocity w 
in a series 

OD 

w = x a,Sm, (2.9) 
m - 1  

with S = sech2i(. This expansion may be shown to be complete in the L2 sense (see 
Appendix B).  Substituting (2.9) into (2.7) and summing over n, we obtain 

00 

~5 = am I?,(#) sin mK( 1 + c) ,  
m=l  

where 
m m+Z-1 

1 = 1  m-1 
a,  = ( - 1 ) m  x (-4)1( 

(2.10) 

(2.1 1 )  

and 
mFm(S) = ($Y)mF(m,m+$;2m+1;S) = exp(-ml([). (2.12)t 

We can invert (2.11) and obtain 

Using this and (2.12), we can rewrite a power series in S as a power series in exp ( - 1(1), 
e.g. 

w = C a n S n  = x ane-nltl. (2.13) 

I n  95 we shall use these results to discuss the discrepancy in the literature of the 
highest solitary wave between the works based on a series solely in S and those that 
include explicitly some terms of the form e-nltl to model the discontinuity in surface 
slope a t  the crest. 

00 00 

n-1 n=1 

t F(m, m++; 2m + 1 ; 8)  is a hypergeometric function. 
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We go on now to find expressions similar to (2.10) for us and us from (2.5) and (2.6), 
i.e. 

co 

and 

us = Z ma, I?,(#) cos m ~ (  1 + 5) 
m = i  

co 
us = Z a,(DI?,) sin m ~ ( l + g ) .  

m - 1  

(2.14) 

(2.15) 

We are now in a position to describe our method of solution. We first use (2.10), 
(2.14) and (2.15) to  express g,us and us as series in powers of S ,  the coefficients of 
which are functions of the unknowns a,. Next we substitute these expressions into 
the dynamic boundary condition (2.8), collect powers of S and set the coefficient of 
each power of S to zero, thereby producing a system of equations in the a,. Solving 
these equations completes the solution. 

Using the Lagrange expansion theorem to invert (2.10), we find that 

(2.16) 

where Z n ,  , is an algebraic combination of al, . . . , an+1. Similarly, i t  follows from (2.14) 
and (2.15) that 

(2.17) 1 us = ($s) x C:s,n[ 1 Un,,COSmK 

1 

00 n+i 

n - o  m = o  

00 n+i 

n - 0  m - i  

and 

(2.18) us = -(is)' z z vn,,sinmK . 

To derive the equations that will enable us to solve for the a,, we replace y, us and 
us in (2.8) by (2.16), (2.17) and (2.18). Setting the coefficient ofisequation zero yields 

C' C' tanK 
KC' 

0 = -a lcosK+AalsinK,  or! - = -. 
C t  K 

(2.19), (2.20) 

(a1 = 0 leads to a trivial solution.) Equating the higher powers of $3 to zero and using 
(2.20), we find that 

n+i 

m - i  
0 = Z E n 9 , s i n m ~  for n >, 2, (2.21) 

where En,m is an algebraic combination of al, ...,an. We shall refer to (2.21) as the 
a-equations. It can be shown that for odd n (even n)  the sum of all terms in (2.21) 
with odd m (even rn) equals a linear combination of a-equations n - 1, n- 3, . . . , and 
is therefore zero. This being the case, we can rewrite the a-equations in such a way 
that K appears only in the form of powers of sin2 K .  For example, for n = 2, 3 and 4 
we have 

$a?+(sin'K)a, = 0, 3a , (3a , -2a~)+8(s in2~)a ,  = 0 (2.22), (2.23) 

+a: + 301, a3 ++a; a2 - 1201: -I- (sin' K )  [(5-6 sin' K )  ap -:a:] = 0. (2.24) 

The converted a-equations form an infinite system of algebraic equations for the a,, 
the coefficients being polynomials in u = sin' K .  This system may be regarded as a 
set of recurrence relations. A straightforward method of solution would be to use the 
nth equation to  solve for a,  in terms of the unspecified quantity al. We note, however, 
that  in the nth equation the coefficient of a, (namely, n-lcotKsinnK-cosnK) has 

and 
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a double zero at K = 0 and [in- 13 other zeros distributed more or less evenly over 
each interval $x < K < +(m+ l ) x ,  m = 0, f 1, +2, ... . For example, consider the 
converted equation for n = 4, (2.24). The coefficient of a4 has a zero a t  K = sin-' 4:. 
Furthermore, the remaining terms do not sum to zero when K = sin-l 4$, so i t  is 
impossible to find a 'straightforward' solution a t  this value of K .  As n +  co the zeros 
of the coefficient o f  a, in equation n cover the interval - 00 < K < 00 more and more 
densely, and the set of values of K a t  which the 'straightforward' method fails is 
actually dense in ( - 00, a). Thus we are forced to  go back to the perturbation method 
of solution based on the shallow-water approximation originated by Boussinesq and 
Korteweg & deVries and further developed by Laitone (1960), Grimshaw (1971) and 
Fenton (1972). We will attempt to find a Taylor-series expansion for each of the a,, 
and a, will no longer be arbitrary. I n  Appendix A we show how this method is 
connected to the recurrence relation method in a simple problem for which the explicit 
solution can be found. 

Following Fenton, we express each coefficient a,  (from (2.9)) as a series in powers 
of a :  

00 

a,= I: a,,,an (2.25) 
n = m  

(note that a,  = O(am)) .  This implies that  
a2 

(2.26) 

where, however, a,, ,-, (1 < 1 < rn- 1) may be determined from a,,,-,, . .., a,-l, m-l 

by means of (2.11) and (2.25). We use the first N a-equations to obtain partial series 
expansions for the unknowns a,, . . . , aN+, : 

at - ai,,a+...+ai,NaN. (2.27) 

This is accomplished by substituting (2.26) into the (converted) a-equations and 
collecting powers of a. By setting the coefficients o f  uN+l from the first N equations 
equal to zero, we generate a system of N linear algebraic equations for the N unknown 
quantities a,, N ,  . . . , aN,  N. 

We now have, a t  least in principle, a method for determining a,, ,, 1 < m, n < CO. 

The method proceeds in stages, the nth stage consisting of the following steps: (1) 
generateZn,j, Un,jand Vn,j,O < j  < n+ l,in(2.16)-(2.18); (2)generatethea-equation 
coefficients En+l,j, 1 < j < n + 2 ;  and ( 3 )  generate and solve the linear system for 
a,, n, ..., an, n. Although computation by hand becomes impractical for n greater 
than four or five, this procedure is sufficiently mechanical for implementation on a 
computer. I n  this way we were able to  carry out the calculations for n 6 17. The 
results of the calculations are presented in $4. 

3. Round-off error 
The only source or error in our calculations thus far is accumulated round-off error. 

We use three methods for estimating round-off at each order of our procedure. The 
first method is based upon the fact that  the sum 

.En, sinnK+E,, n--2 sin (n-2) K +  ... +En, sin t~ (3.1) 

( t  = 1 for odd n, t = 2 for even n) from the nth a-equation equals a linear combi- 
nation of the right-hand sides of a-equations n- 1, n-3 ,  ..., t+ 1. We subtract the 
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K \M 1 

1 0.33333333 
2 0  
3 0  
4 0  

K \" 5 

1 0.042451 952 
2 0.036361 955 
3 0.047218344 
4 0.033407458 
5 0.017476811 
6 0  
7 0  
8 0  

K Y g  
1 -0.055153658 
2 0.017971 190 
3 0.031016670 
4 0.042160786 
5 0.043068759 
6 0.039301 862 
7 0.025566 166 
8 0.014994098 

2 

0.166 666 67 
0.083333332 
0 
0 

6 

0.015943 894 
0.031 004546 
0.045 727 388 
0.037430332 
0.026543 319 
0.01 1972623 
0 
0 

10 

- 0.078 468 449 
0.01 3577 586 
0.022653500 
0.041 377625 
0.045062503 
0.049367 581 
0.031326842 
0.028340832 

3 

0.1 10 185 19 
0.055 092 601 
0.046 759250 
0 

7 

-0.008561 4296 
0.026 444 495 
0.042584726 
0.040145228 
0.033510491 
0.021 386065 
0.00850841 7 3 
0 

11 

- 0.102 49052 
0.008865493 3 
0.01 2 680075 
0.039283857 
0.044463739 
0.062 392013 
0.026892083 
0.059 776 797 

9 0.0045866638 0.010005264 0.001 4379156 
10 0 0.004031 3058 0.019676312 
11 0 0 0.000 863932 97 

y 12 
K 

13 14 

1 -0.12774163 -0.15479179 -0.18429265 
2 0.003 706 8090 -0.002019 788 2 -0.0084386890 
3 0.001 1981582 -0.011689462 -0.025888042 
4 0.035771 128 0.030719535 0.023998437 
5 0.040491 666 0.032079595 0.017696353 
6 0.082986836 0.121 701 74 0.201 997 87 

8 0.17055174 0.61916484 2.442 7726 

10 0.14140336 1.2 16 823 6 9.8041296 

12 0.012 928 51 2 0.392 38498 7.842 1140 

14 0 0 0.57606575 

7 -0.011 133411 -0.15292174 -0.60501210 

9 - 0.120 30501 - 0.948659 89 - 5.743 943 9 

11 -0.046338463 -0.87568627 - 10.922887 

13 0 -0.070328864 -3.204051 9 

K \" 15 16 17 

4 

0.072641 675 
0.043 507 2 15 
0.047 392 988 
0.026 800 920 

8 

.0.032035 128 
0.022 195438 
0.037680372 
0.041 726872 
0.039 074 886 
0.030 256 270 
0.027 202015 
0.00631 1872 8 

1 -0.21701156 -0.25386774 -0.29598301 
2 -0.01 5685 214 - 0.023914058 - 0.033 303 809 
3 -0.041318858 -0.057927 173 -0.075690417 
4 0.015465 755 0.004965852 4 - 0.007 6736184 
5 0.0049502296 -0.039393295 -0.091 177063 
6 0.37518132 0.752 340 09 1.572537 0 
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K \" 15 16 17 

7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

-1.9661929 
9.6594701 

-31.392266 
7 1.950 849 

- 112.81499 
1 19.065 00 

-80.366460 
31.351 102 

-5.361 3204 
0 
0 

-5.951 8985 
37.449 81 3 

-161.73222 
489.772 32 

- 1034.1499 
1512.1546 

954.258 6 
- 1496.2086 

- 353.83078 
57.854339 
0 

- 17.421 640 
142.1 16 81 

-800.27067 
3 150.2774 

- 8 71 7.7604 
16 990.41 1 

21481.010 
-23128.098 

- 12 954.800 
4567.9727 

-714.22617 

TABLE 2. Coefficients Pk, in the expansion 

c =  @[ i Pt,,.p'"] for 1 < m <  k, 1 < k <  17 
k - 1  m - 1  

appropriate combination from (3.1) and look a t  the coefficient of each term; the 
largest deviation from zero is an estimate of the error involved in finding am,n,  
1 < m < n. As a second method of estimating error, we apply the dynamic boundary 
condition (2.8) a t  the wave crest, expanding each term as a series in powers of (T and 
collecting powers of (T. The deviation of the coefficient of rn from zero is a measure 
of the nth-order error. As a final test, we employ an identity first proved by Starr 
(1947) and also used by Longuet-Higgins & Fenton to approximate round-off: 

where p is potential energy and i@ is mass (see $ 4  for precise definitions). We expand 
each term on the right-hand side in powers of (T and collect powers of (T. The size of 
the coefficient of un is a measure of round-off a t  the nth order of the procedure. Based 
on these estimates, it  appears that our computations are correct to  more than 10 
significant digits up to order 14 and to 6 digits thereafter. 

4. Computational results 

in the series 
Using (2.7) and the values of u ~ , ~ ,  1 < i, j < 17, we can compute the coefficients 

m k 

c =  k - 1  x g k [  m - 1  p k , m S m ]  (4.1) 

for 1 < k < 17. The coefficients Pk,m are listed in table 2. From (4.1) we can derive 
expressions for the amplitude E ,  mass i@ and potential energy p of the solitary wave : 

m 

14.3) 
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n En 

1 0.33333333 
2 0.25000000 
3 0.21203704 
4 0.19034281 
5 0.17691656 
6 0.16862220 
7 0.16401820 
8 0.16241302 
9 0.16351324 

10 0.16727555 
11 0.17384262 
12 0.18351974 
13 0.19677393 
14 0.21425084 
15 0.23679823 
16 0.265532 
17 0.301774 

i 
0.333333 
0.250000 
0.2 12 037 
0.190343 
0,176917 
0.168622 
0.16401 8 
0.162 413 
0.163 513 
0.167 275 
0.173 843 
0.183 520 
0.196 774 
0.21425 
0.237 

P n  

1.333 333 33 
0.666 666 67 
0.476 29630 
0.367 791 89 
0.28970821 
0.22606847 
0.169 85500 
0.117 23581 
0.06572742 
0.01345792 

-0.041 18564 
- 0.099 756 13 
-0.16387960 
- 0.235 362 27 
-0.31629150 
-0.409139 
-0.516 891 

P n  
1.333 333 
0.666 667 
0.476296 
0.367 792 
0.289 708 
0.226 069 
0.169855 
0.117236 
0.065 728 
0.013458 

-0.041 185 
-0.099756 
-0.163 879 
- 0.235 4 
-0.32 

vn 

0.148 148 15 
0.182 7 16 05 
0.19707231 
0.20288105 
0.203 687 68 
0.20095335 
0.195 35807 
0.187 21 1 60 
0.17661233 
0.16351567 
0.147 763 3 1 
0.129 092 8 1 
0.107 13548 
0.081 40565 
0.051 28254 
0 .O 15 985 

-0.025463 

v;, 
0.148 148 
0.182716 
0.197072 
0.202 881 
0.203688 
0.200 953 
0.195358 
0.187 21 2 
0.176612 
0.163516 
0.147764 
0.129 093 
0.107 136 
0.081 4 
0.05 

TABLE 3. Coefficients in the expansions of e,  if!? and in powers of cr (the prime denotes the 
coefficients calculated by Longuet-Higgins & Fenton 1974) 

where M and V are given by 

and 

The coefficients ek, pk and vk for k < 17 are listed in table 3. For purposes of 
comparison, we have included the corresponding coefficients as calculated from the 
data given by Longuet-Higgins & Fenton (1974). 

For small- to medium-amplitude waves, these series expressions provide perfectly 
adequate descriptions of the wave-profile and parameter values. Series (4.1) and (4.2) 
give two-digit accuracy even at B z 0.52 (as determined by observed convergence of 
the partial sums). For large-amplitude waves, however, a series in powers of sin2 K 

cannot possibly be accurate, since more than one wave corresponds to  a single value 
of K for K larger than some critical value. If we follow Longuet-Higgins & Fenton, 
recasting our series in terms of the parameter w = 1 - (c2/c,") [ 1 - u,(O)l2 and using 
diagonal Pad6 approximants to accelerate convergence, we find that it is possible to 
estimate the values of B, &, and c2/c' for waves of amplitudes up to  and including 
the maximum. The observed convergence of the Pad6 approximants is not completely 
convincing, however, and we feel that  more than 17 terms are required if this 
method is to be used with confidence. Our computed values agree with those given 
by Longuet-Higgins & Fenton (1974), but differ from the more recent calculations 
of Williams (1981), Witting (1981) and Hunter & Vanden-Broeck (1983). (See the 
discussion below. ) 
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5.  Summary and discussion 
We compute the first 17 terms in a series expressing the free-surface elevation 5 

in powers of sech2$(z-ct). For small- to medium-amplitude waves this series 
provides accurate values of wave parameters and profiles. By using Pad6 approximants 
to accelerate convergence, we can calculate parameter values for waves of all 
amplitudes. Our calculations agree with those of Longuet-Higgins & Fenton (1974), 
but differ from the data given by Williams (1981), Witting (1981) and Hunter & 
Vanden-Broeck (1983). These authors include terms similar to e-mlcl to account for 
the sharp crest of the highest wave. Witting (1975) suggests a possible explanation 
for this discrepancy: expansions such as (4.1) that use only one value of r~ (or K )  are 
incomplete and are only valid asymptotically as E approaches zero (cf. Miles 1980; 
Schwarz & Fenton 1982). He reaches this conclusion after demonstrating the 
inadequacy of a solution procedure based on the expansion 

m 
x+iy = $+ill.+ C a,enK(@fi*). 

n - 1  

The a, must satisfy a system of equations similar to (2.21). Witting regards the system 
as a set of recurrence relations and solves for a, (n 2 2) in terms of the arbitrarily 
chosen a,. This method is subject to the objection outlined in $2, however. 
Furthermore, it  can be shown that the set of functions {sechZn +x}z -  spans L2(0, CO) 

(see Appendix B). Thus it would appear that  we can expect (4.1) to converge in the 
mean. Our data suggest that  we may even have pointwise convergence, at least for 
low- to medium-amplitude waves. Also, since the series for e-,151 in powers of S 
converges pointwise on - 03 < < < co (Appendix B), (4.1) will converge pointwise 
even for the highest wave if it proves possible to describe that wave in terms of the 
functions (e-"I5'>,"- . 

From (2.12) we see that an exponential function that has a discontinuity a t  < = 0 
can be expressed as a hypergeometric function that has a branch-point singularity 
a t  S = 1 (or < = 0), i.e. 

The hypergeometric series of F in S converges very slowly near S = 1.  One may also 
raise the question of how well a rational-function (Pad6) approximation can represent 
a branch-point singularity. This may cast some doubt on the series solution in S as 
given by the first part of (2.13) in the case of the maximum solitary wave, which 
contains a discontinuity of slope a t  the crest. On the other hand to include any term 
in the second part of (2.13) will introduce a discontinuity of slope, which is not 
acceptable for any waves other than the maximum one. We believe that one way to 
resolve this dilemma is to carry the expansion of (2.13) either in an or 01, to sufficiently 
high order that the nature of the branch-point singularity can be extracted from the 
series. The two distinct expansions will then become one. 

This research was sponsored by the Office of Naval Research, U. S. Navy, and the 
National Science Foundation (CME-801-2192, Fluid Dynamics Program). 
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Appendix A. Example of a recurrence relation containing a small parameter 
Consider the recurrence relation 

1 
nsA, = An-l -~ 

(n- l ) !  (n 2 2). 

This system cannot be solved by the ' straightforward method ' referred to  in $ 2 when 
E = 0. For G + 0 the system can be solved exactly i.e. 

[A,-  1 - E - .  .. - A ,  = -~ 
1 1  
n ! 8 - l  

. , y - z ]  

IfA,in (A 2)istoremainfinitease+0,wemusthaveA1 = 1/(1 -s)+0(en-l).Taking 
A ,  = l / ( l -e )  in (A 2), we find that 

1 1  
n!l-E 

A =--. 

On the other hand, we can ignore solution (A 2) and attempt t o  solve (A 1) by 
expressing each A, as a series in powers of E :  

W 

A, = C A,,,em (n 2 1). 
m = o  

Substituting (A 4) into (A 1) and setting the coefficients of each power of E equal to 
zero, we find that A,, = l/n!. Therefore 

1 1 1  
n .  n! 1-G 

A ,  = + 1 + € + € 2 +  ...) =--. 

This is the same as (A 3), which we found by working with the exact solution (A 2). 
We cannot find the explicit solution of the more complicat'ed system (2.21), so we 
only use the series-expansion method ($2). 

Appendix B. Proof that {sechzn+z}:=, spans L2(0, co) 
LEMMA 1. For all f in L2(0, 00) and f o r  all E > 0, there exists a polynomial 

n 

m = o  
p(ePZx) = 

such that IIf-e-xp(e-2x)II < E .  

( 1 1  11 denotes the L2 norm.) 

LEMMA 2 .  
e-nx = (i)mz( 2m ) sechzm4z in L2(0, co). 

m - n  4 m m-n 

PROPOSITION. V(sech2nI,z)z,l = L2(0, 0 0 ) .  
Proof of proposition: Let f E L2(0, co) and E > 0 be given. We need to  show that there 

exists a polynomial q ( X )  (where X = sech2 ix) such that /If- q(S) 11 < E .  By lemma 1, 
3p(e-2x) = Zks0 A e-zmx such that IIf-e-xp(e-2Z)II < ;G. By lemma 2 ,  3pm(S) such 
that 

E '1 e-(2m+l) 1: - (m = 0, ..., n) 
p m ( s ) ' '  < 2(n+ 1) [Am/ 



= $€+$€ = 6 .  

Z ~ , o A m p m ( S )  is the desired polynomial q ( X ) .  Q.E.D. 

Proof of lemma 1 : LetfEL2(0, CO) and 6 > 0 be given. Let g(x) E exf(x). Then 

rm r m  

Then 

Now let y = e-2” and hn(y) = g( -$lny)XLe-2n, p / n l ,  0 < y 6 1. 

Thus 

almost everywhere on (0, 1 ) .  Therefore, by the Monotone Convergence Theorem, 

j lg2( -$ lny)=  n+m lim 

i.e. g( -ilny)EL2(0, 1) .  Since L2(0, 1) = V{y”}~-,, there existsapolynomialp(y) such 
that 

Replacing y by ed2”, we find that 

2 /: [ g ( ~ ) - p ( e - ~ ~ ) ] ~  eP2” dx c 2e2, or [e-”g(z) -e-”p(e-2Z)]2 dx < E? Q.E.D. r 
Proof of lemma 2: Using (2.12), we obtain the formula 
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This series converges pointwise for all S in the range 0 < S < 1. Thus in order to prove 
L2 convergence it suffices to show that the norms of the partial sums converge to the 
norm of e P X .  Note that 

00 n+N 11 m - n  niN Bn,,SrnlI2 = 1 o [ m - n  ‘I: Bn,mSm]2da 

Since 

for 
for 

2n < m < 2 n + N ,  

2n+N < m < 2 ( n + N ) ,  

it follows that 

2(n+N)  

m - 2 n  
Cn, N ,  m Sm;t.e-2nx (as N +  w )  pointwise on 0 < x < co. 

Hence by the Monotone Convergence Theorem 

i.e. Q.E.D.  
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